Gene regulatory functions of Drosophila Fish-hook, a high mobility group domain Sox protein

نویسندگان

  • Yue Ma
  • Emily L Niemitz
  • Patricia A Nambu
  • Xiaoliang Shan
  • Charles Sackerson
  • Miki Fujioka
  • Tadaatsu Goto
  • John R Nambu
چکیده

In this study we investigate the gene regulatory functions of Drosophila Fish-hook (Fish), a high mobility group (HMG) Sox protein that is essential for embryonic segmentation. We show that the Fish HMG domain binds to the vertebrate Sox protein consensus DNA binding sites, AACAAT and AACAAAG, and that this binding induces an 85 degrees DNA bend. In addition, we use a heterologous yeast system to show that the NH2-terminal portion of Fish protein can function as a transcriptional activator. Fish directly regulates the expression of the pair rule gene, even-skipped (eve), by binding to multiple sites located in downstream regulatory regions that direct formation of eve stripes 1, 4, 5, and 6. Fish may function along with the Drosophila POU domain proteins Pdm-1 and Pdm-2 to regulate eve transcription, as genetic interactions were detected between fish and pdm mutants. Finally, we determined that Fish protein is expressed in a dynamic pattern throughout embryogenesis, and is present in nuclear and cytoplasmic compartments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drosophila fish-hook gene encodes a HMG domain protein essential for segmentation and CNS development.

We describe the isolation and analysis of the Drosophila fish-hook (fish) gene, which encodes a novel member of the SOX subgroup of High Mobility Group (HMG) domain proteins that exhibit similarity to the mammalian testis determining factor, SRY. The fish gene is initially expressed in a pair-rule-like pattern which is rapidly replaced by strong neuroectoderm expression. fish null mutants exhib...

متن کامل

Functional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene.

During Drosophila embryogenesis the CNS midline cells have organizing activities that are required for proper elaboration of the axon scaffold and differentiation of neighboring neuroectodermal and mesodermal cells. CNS midline development is dependent on Single-minded (Sim), a basic-helix-loop-helix (bHLH)-PAS transcription factor. We show here that Fish-hook (Fish), a Sox HMG domain protein, ...

متن کامل

The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm.

In the Drosophila embryonic central nervous system, neural stem cells, called neuroblasts, acquire fates in a position-specific manner. Recent work has identified a set of genes that functions along the dorsoventral axis to enable neuroblasts that develop in different dorsoventral domains to acquire distinct fates. These genes include the evolutionarily conserved transcription factors ventral n...

متن کامل

Drosophila Pelle phosphorylates Dichaete protein and influences its subcellular distribution in developing oocytes.

The Drosophila Dichaete gene encodes a member of the Sox family of high mobility group (HMG) domain proteins that have crucial gene regulatory functions in diverse developmental processes. The subcellular localization and transcriptional regulatory activities of Sox proteins can be regulated by several post-translational modifications. To identify genes that functionally interact with Dichaete,...

متن کامل

The oncogenic potential of the high mobility group box protein Sox3.

Sox proteins belong to the superfamily of high mobility group (HMG) proteins. Sox3 is expressed predominantly in the immature neuroepithelium. Ectopic expression of Sox3 causes oncogenic transformation of chicken embryo fibroblasts (CEFs). The oncogenicity of Sox3 is correlated with nuclear localization and transcriptional regulatory activity; mutants containing deletions in the HMG box or the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 73  شماره 

صفحات  -

تاریخ انتشار 1998